Fractal Techniques for Face Recognition

نویسنده

  • Hossein Ebrahimpour-Komleh
چکیده

Fractals are popular because of their ability to create complex images using only several simple codes. This is possible by capturing image redundancy and presenting the image in compressed form using the self similarity feature. For many years fractals were used for image compression. In the last few years they have also been used for face recognition. In this research we present new fractal methods for recognition, especially human face recognition. This research introduces 3 new methods for using fractals for face recognition, the use of fractal codes directly as features, Fractal image-set coding and Subfractals. In the first part, the mathematical principle behind the application of fractal image codes for recognition is investigated. An image Xf can be represented as Xf = A × Xf + B which A and B are fractal parameters of image Xf . Different fractal codes can be presented for any arbitrary image. With the definition of a fractal transformation, T (X) = A(X − Xf ) + Xf , we can define the relationship between any image produced in the fractal decoding process starting with any arbitrary image X0 as Xn = Tn(X) = An(X − Xf ) + Xf . We show that some choices for A or B lead to faster convergence to the final image. Fractal image-set coding is based on the fact that a fractal code of an arbitrary gray-scale image can be divided in two parts – geometrical parameters and luminance parameters. Because the fractal codes for an image are not unique, we can change the set of fractal parameters without significant change in the quality of the reconstructed image. Fractal image-set coding keeps geometrical parameters ii the same for all images in the database. Differences between images are captured in the non-geometrical or luminance parameters which are faster to compute. For recognition purposes, the fractal code of a query image is applied to all the images in the training set for one iteration. The distance between an image and the result after one iteration is used to define a similarity measure between this image and the query image. The fractal code of an image is a set of contractive mappings each of which transfer a domain block to its corresponding range block. The distribution of selected domain blocks for range blocks in an image depends on the content of image and the fractal encoding algorithm used for coding. A small variation in a part of the input image may change the contents of the range and domain blocks in the fractal encoding process, resulting in a change in the transformation parameters in the same part or even other parts of the image. A subfractal is a set of fractal codes related to range blocks of a part of the image. These codes are calculated to be independent of other codes of the other parts of the same image. In this case the domain blocks nominated for each range block must be located in the same part of the image which the range blocks come from. The proposed fractal techniques were applied to face recognition using the MIT and XM2VTS face databases. Accuracies of 95% were obtained with up to 156 images.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Face Recognition in Thermal Images based on Sparse Classifier

Despite recent advances in face recognition systems, they suffer from serious problems because of the extensive types of changes in human face (changes like light, glasses, head tilt, different emotional modes). Each one of these factors can significantly reduce the face recognition accuracy. Several methods have been proposed by researchers to overcome these problems. Nonetheless, in recent ye...

متن کامل

A comprehensive experimental comparison of the aggregation techniques for face recognition

In face recognition, one of the most important problems to tackle is a large amount of data and the redundancy of information contained in facial images. There are numerous approaches attempting to reduce this redundancy. One of them is information aggregation based on the results of classifiers built on selected facial areas being the most salient regions from the point of view of classificati...

متن کامل

Hybridization of Facial Features and Use of Multi Modal Information for 3D Face Recognition

Despite of achieving good performance in controlled environment, the conventional 3D face recognition systems still encounter problems in handling the large variations in lighting conditions, facial expression and head pose The humans use the hybrid approach to recognize faces and therefore in this proposed method the human face recognition ability is incorporated by combining global and local ...

متن کامل

Face recognition by fractal transformations

In this paper, we propose a new method for computerized human face recognition using fractal transformations. The popular use of fractal image coding has been for image compression. It is only recently that their uses for object recognition are being explored. We will show that by utilizing the intrinsic properties of block-wise self-similar transformations in fractal image coding we can use it...

متن کامل

Face recognition by using fractal encoding and backpropagation neural network

This paper presents a frontal view face recognition method by using fractal codes which are determined by a fractal encoding method from the edge pattern of the face region which covers eyebrows, eyes and a nose. In recognition process, these fractal codes are fed ass inputs to a Backpropagation neural network for learning and identifying a person. The experiments were performed with one in-roo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009